Поддержать команду Зеркала
Беларусы на войне
  1. В Пинске на третьи сутки поисков нашли пропавшего подростка, который ушел из дома семейного типа
  2. «Вясна»: В выходные на границе задержали мужчину, который возвращался домой
  3. Молочка беларусского предприятия лидирует по продажам в России. Местные заводы недовольны
  4. Экс-спикерка КС Анжелика Мельникова пропала 10 месяцев назад: что известно (и чего мы до сих пор не знаем) о ее исчезновении
  5. Последние высказывания Пескова раскрыли реальные цели участия России в переговорах с США — вот о чем речь
  6. Появилось еще одно подтверждение того, что Тихановская переезжает из Вильнюса
  7. Избавил литературу от «деревенского» флера и вдохновил на восстановление независимости. Пять причин величия Владимира Короткевича
  8. Детей «тунеядцев» могут поставить в СОП. В милиции назвали условие
  9. Состоялась первая двусторонняя встреча Владимира Зеленского и Светланы Тихановской
  10. Город с самыми высокими зарплатами оказался среди аутсайдеров — там быстрее сокращается население и снижается уровень жизни
  11. «Пока что белому шпицу Лукашенко оставлено больше прав, чем народу Беларуси». Зеленский выступил с яркой речью в Вильнюсе
  12. Почему Зеленский так много упоминал Беларусь и пригласил Тихановскую в Киев? Спросили политических аналитиков
  13. Военные блогеры все чаще отвергают альтернативную реальность на поле боя, которую рисуют Путин и военное командование РФ — ISW
  14. Ограничение абортов не повысит рождаемость и опасно для женщин. Объясняем на примерах стран, которые пытались (дела у них идут не очень)
  15. Лукашенко не отчаивается встретиться с лидером одной из крупнейших экономик мира и, похоже, нашел для возможной аудиенции хороший повод
  16. Лукашенко заставил его уехать из страны, а потом силовики добивались возвращения. История самого богатого беларусского вора в законе
  17. Мастер по ремонту техники посмотрел на «беларусский» ноутбук и задался важным вопросом
  18. «Очень молодой и активно взялся за изменения». Гендиректора «Белтелекома» сняли с должности
  19. Курс доллара идет на рекорд, но есть нюанс. Прогноз курсов валют


/

Ученые из Индийского института науки и Калифорнийского технологического института решили одну из старейших загадок биологии — почему ключевые электроны в процессе фотосинтеза двигаются только по одной стороне белково-пигментного комплекса, хотя структура выглядит симметричной, пишет ScienceDaily.

Изображение используется в качестве иллюстрации. Фото: AI / ScienceDaily
Изображение используется в качестве иллюстрации. Фото: AI / ScienceDaily

Фотосинтез — это фундаментальный процесс, с помощью которого растения, водоросли и некоторые бактерии преобразуют энергию солнечного света в химическую, выделяя при этом кислород. Он состоит из множества реакций, происходящих за считаные триллионные доли секунды. Несмотря на десятилетия исследований, ранние этапы этой цепочки оставались плохо понятными.

Исследователи сосредоточились на первом ключевом звене фотосинтеза — комплексе под названием «Фотосистема II». Он состоит из двух симметричных ветвей — D1 и D2, окруженных четырьмя молекулами хлорофилла и двумя молекулами феофитина, а также связан с переносчиками электронов — пласто-хинонами. По логике, электроны должны двигаться по обеим ветвям одинаково. Но на деле энергия всегда идет только по ветви D1. Это противоречие десятилетиями ставило ученых в тупик.

Команда исследователей использовала молекулярное моделирование, квантово-механические расчеты и теорию Маркуса — модель, описывающую передачу электронов, — чтобы понять, где возникает блокировка. Они выяснили, что D2 имеет значительно более высокий энергетический барьер — для переноса электрона от феофитина к пласто-хинону требуется вдвое больше активационной энергии, чем в D1. Это делает прохождение электрона по D2 практически невозможным.

Кроме того, оказалось, что сопротивление электронному потоку в D2 в сто раз выше, чем в D1. Важную роль играют и небольшие различия в окружении пигментов: у хлорофилла в ветви D1 уровень возбуждения ниже, что делает его более «привлекательным» для электрона.

Ученые считают, что если изменить компоненты D2 — например, заменить местами хлорофилл и феофитин, — можно снизить энергетический барьер и «разблокировать» движение электронов по обеим ветвям. Это открывает перспективы для создания искусственных систем фотосинтеза, которые смогут более эффективно преобразовывать солнечную энергию в топливо.

Результаты исследования опубликованы в журнале Proceedings of the National Academy of Sciences.