Поддержать команду Зеркала
Беларусы на войне
  1. Лукашенко объяснил (друзьям и врагам), почему «болтается постоянно по полям и фермам»
  2. «Снимаю ботинок, показываю». Лукашенко раскритиковал «Белвест», похвалил его конкурента и рассказал, какую обувь сам носит
  3. Беларусские официальные лица и ранее делали абсурдные заявления — аналитики ISW оценили выступление замглавы КГБ в Таджикистане
  4. Из-за закрытия Польшей границы с Беларусью китайские поезда нашли альтернативные пути транзита
  5. Для населения появился очередной запрет — он касается валюты. В Нацбанке рассказали, когда заработает ограничение
  6. Из России пришла новость, которая может повлиять на валютный рынок Беларуси. Рассказываем подробности
  7. Самый первый беларусский вор в законе появился еще в 1950-м. Спустя полвека Лукашенко дал ему шанс и оставил в живых
  8. «С бедного что взять, зато их много». Беларуска работала на заводе в Жлобине, а сейчас в Польше — что рассказывает
  9. Трем женщинам дали колонию и огромные штрафы за дворовой чат. Среди них 62‑летняя завуч — «Наша Ніва»
  10. После гибели отца в Слуцкой ЦРБ беларуска записала видеообращение к генпрокурору и Лукашенко. В больнице прошла масштабная проверка
  11. «Новый феномен». На совещании по поводу «большой сделки» с США Лукашенко сделал важное заявление, которое мало кто заметил, — рассказываем
  12. К какому курсу доллара готовиться беларусам в 2026 году? Эксперты сделали прогноз
  13. Литва возобновила движение в пунктах пропуска на границе с Беларусью


/

Новое исследование, опубликованное в журнале Frontiers in Psychology, показало, что даже самые передовые языковые модели, вроде ChatGPT, испытывают серьезные трудности при попытке интерпретировать метафорический язык в политических выступлениях. Ученые проанализировали четыре ключевые речи Дональда Трампа, произнесенные с середины 2024 по начало 2025 года — после покушения, после победы на выборах, в день инаугурации и при обращении к Конгрессу. Эти тексты были выбраны из-за их высокой эмоциональной насыщенности и частого использования метафор, формирующих яркие образы, способные вызывать отклик у избирателей, пишет PsyPost.

Президент США Дональд Трамп выступает на заседании кабинета министров в Белом доме в Вашингтоне, округ Колумбия, США, 8 июля 2025 года. Фото: Reuters
Президент США Дональд Трамп выступает на заседании кабинета министров в Белом доме в Вашингтоне, округ Колумбия, США, 8 июля 2025 года. Фото: Reuters

Исследователи адаптировали метод критического метафорического анализа для работы с ChatGPT-4. Модель должна была распознать метафоры, понять контекст, классифицировать образы и объяснить, какую эмоциональную или идеологическую функцию они выполняют. В количественном плане результат был неплохим: из 138 фрагментов речи ChatGPT правильно определил 119 метафор, что дало уровень точности около 86 процентов. Но при ближайшем рассмотрении обнаружились систематические сбои в логике модели.

Наиболее распространенной ошибкой стало смешение метафор с другими выражениями. Например, фраза «Вашингтон — это ужасное поле боя» была ошибочно распознана как метафора, хотя на деле это прямолинейное преувеличение с эмоциональной окраской. Модель также склонна переусложнять простые обороты: она интерпретировала выражение «ряд смелых обещаний» как пространственную метафору, хотя никакого переносного смысла там нет. Еще один типичный сбой — путаница имен собственных и метафор. Так, термин «Железный купол» — израильская система ПВО — был принят ИИ за метафору, а не за техническое название.

Анализ показал, что ChatGPT уверенно справляется с часто используемыми образами, связанными с движением, силой, здоровьем или телесностью. Например, фразы вроде «мы поднимаемся вместе» или «вернем закон и порядок» были верно классифицированы как метафоры действия и власти. Но в более редких тематиках — например, в метафорах, связанных с растениями или едой — модель оказалась менее точной. Она либо не распознавала образы вообще, либо ошибочно воспринимала буквальные выражения как переносные.

Исследование также вскрыло более глубокие проблемы. Во-первых, результаты работы ChatGPT сильно зависят от того, как сформулирован запрос. Небольшое изменение в инструкции может привести к совершенно другому результату. Во-вторых, модели не имеют доступа к культурному опыту, эмоциональному контексту и социальным кодам — всему тому, что люди интуитивно используют при восприятии речи. И, наконец, обучение на огромных, но неаннотированных корпусах интернета делает языковые модели уязвимыми: они могут легко упустить значимые образы или, наоборот, увидеть метафору там, где ее нет.

Ученые сравнили работу ChatGPT с более традиционными инструментами анализа, такими как Wmatrix и MIPVU. Классические методы оказались медленнее, но более стабильными и точными в определении разных типов метафор. ChatGPT же выигрывает в скорости и удобстве, но требует тщательного контроля со стороны человека.

Авторы исследования пришли к выводу, что языковые модели вроде ChatGPT можно использовать как вспомогательный инструмент для анализа метафор, но не как полноценную замену экспертному мышлению. Особенно в политике, где метафоры апеллируют к коллективной памяти, культурной символике и эмоциональным кодам, машины пока остаются всего лишь учениками — внимательными, но все еще плохо разбирающимися в подтексте.